If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-33n-400=0
a = 7; b = -33; c = -400;
Δ = b2-4ac
Δ = -332-4·7·(-400)
Δ = 12289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-\sqrt{12289}}{2*7}=\frac{33-\sqrt{12289}}{14} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+\sqrt{12289}}{2*7}=\frac{33+\sqrt{12289}}{14} $
| 12=v-1 | | 9y+1y=(9+1)y | | -3=9+n | | n/19=-13 | | 7x+5=2x=20 | | 90=70(x+32) | | -135=9m | | 7x5=2x=20 | | 168=8(x+7)+6x | | 7x-5=2x=20 | | 2(8^4)+2(8^x)+2(4^x)=352 | | 3(2k-5)=6(k-4)+9 | | 10=m+10 | | 6x2+37x+6=0 | | -88=-2(4-7x)-4x | | 1/7(14r=28)+2(r=2) | | 105=2r+7(r+6) | | -6-8b=-134 | | 41-6x=13+8x | | x+5=-7/4 | | 16−2r=−3r+6r+116−2r=−3r+6r+116 | | -18=k/11 | | |x+5|=-7/4 | | 6=r/5+9 | | -10+a=5 | | 80+0.70m=30+0.80m | | 4r+7(r-8)=-133 | | 5x+23=-26 | | 7(-5+6k)+6k=7k-35 | | 5(4m-5)=-145 | | 1/2(4x=8)=-12 | | 3/5x-1/10x=5 |